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Mexican wolf recovery planning has spanned N3 decades, yet federal and state planners have not reached con-
sensus on how to structure recovery efforts with the remaining inbred founder lineages to maximize genetic di-
versity while balancing many other demographic and social considerations. The US Fish andWildlife Service and
state wildlife agencies are working to draft a revised recovery plan specific to the Mexican wolf that will appro-
priately incorporate genetic concerns in recovery criteria that can be implemented on a human-dominated land-
scape. Inbreeding effects, where present in the remaining lineages, are stochastic and unpredictable in a
management context. Despite these effects, population growth in Mexican wolves the past 5 years rivals the
rate observed in Yellowstonewolves during the last decade.While small populations risk extinction via inbreed-
ing depression, there are often larger,more imminent threats of demographics,mortality, or habitat loss thatmay
impact success of recovery efforts. Releasing captive-reared wolves is problematic and often creates conflict in
local human communities, but fostering of captive-born wolves into wild wolf packs is a viablemeans of increas-
ing genetic diversity and decreasing habituated wolf-human conflict. There are many alternative ways to esti-
mate the number of wolves per population needed to recover the Mexican wolf. Efforts should thus be made
to provide for sufficient genetic diversity, but not at the expense of more immediate factors that influence suc-
cessful recovery.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction offspring for release were carefully planned to maximize genetic diver-
The current Mexican wolf (Canis lupus baileyi) population traces its
ancestry to 7 founders used to establish a captive breeding program
now consisting of 245 wolves in 53 institutions in the U.S. and Mexico.
Mexicanwolves were presumed extinct in the wild by 1980 due to con-
trol efforts resulting from conflicts with livestock production (Brown,
2002). Between 1970 and 1980, five wild animals were captured in Ar-
izona and Mexico and added to a few animals already in captivity as
founders of the new captive population (see Hedrick et al., 1997 for
comprehensive history of pedigree). In 1998, the first 11 captive-raised
Mexicanwolveswere released into the Blue Rangewolf recovery area of
Arizona (Fig. 1). None of the original founders were still alive, but man-
agement of the resulting captive population and selection of their
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sity of the new wild population. Subsequent collaboration with Mexico
also resulted in the release of captive wolves in northernMexico begin-
ning in 2011. At last official count in 2016, 21Mexican wolves are living
in the wild in Mexico, including 3 consecutive litters totaling 15 wild-
born pups (C. Lopez-Gonzales, Universidad Autonoma de Queretaro,
personal communication).

As with many attempts to recover populations in the wild, this un-
dertaking has faced formidable social, demographic, mortality and hab-
itat security challenges. Among its many challenges, the Mexican wolf
recovery programhas struggled to establish and update a species recov-
ery andmanagement plan that has the support of both state and federal
agencies involved, even though recovery planning has spanned N3 de-
cades. The original Mexican Wolf Recovery Team was formed in 1979
with representatives from Mexico, Arizona, and New Mexico, the US
Fish and Wildlife Service (USFWS), and other subject matter experts.
This team wrote the 1982 Mexican Wolf Recovery Plan, which was
then signed by representatives from the United States and Mexico. A
second Mexican wolf recovery team was assembled in the mid-1990s
to update and revise the original recovery plan, but no final draft result-
ed from that effort. In 1998, an Interagency Management Plan was
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Fig. 1. Mexican wolf population growth, reproduction (i.e. annual observed increase in
population from pup production), and number of captive wolves released, Arizona and
NewMexico, 1998–2015.

Fig. 2. Increase in average litter size and percent of wild-born individuals inMexican wolf
population, 1998–2015.
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developed to facilitate and guide the first release ofMexicanwolves into
the wild that year. In 2003, the USFWS reclassified the gray wolf
(C. lupus) in North America, creating three Distinct Population Segments,
and convened a third recovery team to develop a new recovery plan for
Mexican wolves in the Southwestern Distinct Population Segment
(SWDPS). Recovery planning for the Mexican wolf was again put on
hold in January 2005when a court ruling vacated the SWDPS designation.
In 2010, the USFWS began the fourth iteration of recovery planning for
theMexican wolf and chartered a recovery team to revise the 1982Mex-
icanWolf Recovery Plan to include achievable and measureable recovery
criteria to result in the wolf's eventual delisting. The work of this team
came to a halt in early 2013 without a revised draft recovery plan.

In 2015, the USFWS revised the list of Endangered and Threatened
Wildlife to remove the Mexican wolf from the general listing under all
gray wolves and list it separately as a subspecies (USFWS, 2015a). The
taxonomic status of the Mexican wolf as a valid subspecies has been
generally supported by morphologic and genetic data (Bogan and
Mehlhop, 1983; Nowak, 2003; vonHoldt et al., 2011; USFWS, 2015a;
but see Cronin et al., 2015a, b). Regardless of any disagreement over in-
fraspecific taxonomy, the Mexican wolf is now listed as a subspecies
under the Endangered Species Act and there is a legal obligation to
work towards recovery of this subspecies. Currently, the USFWS is un-
dertaking a renewed effort to revise the draft plan by incorporating
input gathered during a series of ongoing Mexican wolf recovery plan-
ningworkshops of statewildlife agencies (i.e. Arizona, NewMexico, Col-
orado, Utah), Mexico, and others with wolf recovery experience.

Controversy over the recovery program has often been extreme and
has involved numerous lawsuits, disagreements over state and federal
recovery objectives, and negative local attitudes. After three failed at-
tempts to revise the original recovery plan, uncertainty and mistrust
among stakeholders has produced multiple lawsuits (e.g. 6 filed since
November 2014, J. Odenkirk, Arizona Assistant Attorney General, per-
sonal communication) and compromised public support for the recov-
ery effort. Significant contention has revolved around questions
primarily related to the location and number of wolves that should be
allowed on the landscape. It has become increasingly evident that re-
covery of Mexican wolves will need to consider and weigh both the so-
cial concerns voiced by local communities and the numbers of wolves
required for sustainable populations in the wild.

The demographic history of the modern population dictates a need
to consider the relative and absolute importance of inbreeding effects
as recovery planning and actions seek to increase genetic diversity
and fitness in wild wolves. Yet genetic recovery and wolf numbers
must be strategically balanced against social pressures and concerns
from local communities that can strongly impact recovery success.
Herewe seek to briefly discuss genetic and demographic considerations
for maintaining and increasing the genetic diversity present in the orig-
inal founders and their progeny in thewild population and the extent to
which genetic considerations should set recovery criteria.

2. Small populations and inbreeding effects

Wherever population numbers are dramatically reduced, genetic di-
versity is lost, and populations with few remaining founders, like the
Mexican wolf, may suffer inbreeding depression as deleterious alleles
are exposed in a homozygous state (Hartl and Clark, 2007). Such effects
are stochastic and dependent on the number and character of deleteri-
ous alleles in the genomes of subsequent generations, on how those al-
leles relate to success in the local environment, and on how variation is
lost as alleles are sampled from one generation to establish the next (i.e.
random genetic drift). The genetic considerations of inbreeding are rel-
evant to Mexican wolf recovery because the founding population in-
cluded only 7 animals. Initially, the captive population arising from
these founders displayed little evidence of inbreeding depression
(Kalinowski et al., 1999). Yet in the first several years of recovery efforts,
inbreeding effects were suggested in a few recruitment-related vari-
ables among the most highly inbred individuals and lineages (i.e.
sperm motility in Asa et al., 2007; captive litter size in Fredrickson et
al., 2007), as was observed in two other extremely inbred populations
of gray wolves (both founded by a single pair of wolves) that manifest
skeletal abnormalities (Räikkönen et al., 2009) or lowered fitness (Vilà
et al., 2003). However, more outbred individuals and lineage crosses
of Mexican wolves performed similarly to gray wolves that were not
highly inbred (Asa et al., 2007; Fredrickson et al., 2007). Recent growth
of the wild Mexican wolf population, increased pup production, and
larger litter sizes (Figs. 1, 2) also suggest inbreeding effects do not undu-
ly compromise recovery efforts in Mexican wolves.

Even when inbreeding effects are substantial, the magnitude and
timing ofmanifested effects vary unpredictably among species and pop-
ulations within species (Hundertmark, 2009; Räikkönen et al., 2009,
and references therein). This indirect connection between inbreeding
depression and persistence in wild populations is exemplified by
many translocated animal populations that are thriving demographical-
ly (Table 1). For instance, the white-tailed deer (Odocoileus virginianus)
population in Finland began with 4 individuals during the 20th century,
but now supports an annual harvest of 25,000 individuals (Heffelfinger,
2011). North American elk (Cervus elaphus) in some areas (e.g. in Penn-
sylvania and California) and bison (Bison bison) have rather lowmodern



Table 1
Examples of mammal populations with small number of founders (Incr. = increasing).

Country Species Population low point Population currently Status Reference

Finland White-tailed deer 4 (1934)
4 (1937)
4 (1948)
100 (1960–70s)

25,000 harvested annually Stable Heffelfinger (2011)

New Zealand White-tailed deer 4 (1901)
19 (1905)

1500+ harvested annually Stable Heffelfinger (2011)

France-Haute Isl. Mouflon 2 Peaked @ 700; now 200–600 Fluctuating Kaeuffer et al. (2007)
KwaZulu-Natal province, South Africa African wild dogs 20 (1980s) 257 (by 2011) Stable Spiering et al. (2011)
USA-Santa Rosa Island Kaibab mule deer 30 4000–6000 Increasing until NPS

removal
Heffelfinger (2013)

USA-Tiburon Isl. Bighorn sheep 20 500 Stable/incr. Wilder et al. (2014)
USA-Arizona Rocky Mtn elk b300 Sustains hunting take of N

9000/year
Stable/incr. Carmony et al. (2010)

USA Black-footed ferret 18 N1500 Stable Miller et al. (1996)
USA-Alaska, Prince William Sound Sitka black-tailed deer 8 (1916) + 16

(1917–1932)
Stable/incr. Paul (2009)

USA-Alaska, Kodiak Island Sitka black-tailed deer 9 (1934) Stable/incr. Paul (2009)
USA-Alaska, Baranof Island Mountain goat 18 (1923) Stable/incr. Paul (2009)
USA-Alaska, Kodiak Island Mountain goat 17 (1952–1953) Stable/incr. Paul (2009)
USA-Alaska, Revillagigedo Island
(Swan Lake)

Mountain goat 17 (1983) ~250 Stable Paul (2009)

USA-Alaska, Revillagigedo Island
(Deer Mtn)

Mountain goat 15 (1991) ~120 Stable Paul (2009)

USA-Alaska, Copper River Delta Moose ~24 (1949–1958) Stable/incr. Paul (2009)
USA-Alaska, Berners Bay Moose 16 (1958) + 11

(1960)
~100 Stable Paul (2009)

USA-Alaska, Kalgin Island Moose 2 (1957) + 3
(1958) + 1 (1959)

179 (2003) Fluctuating (due to
severe winters)

Paul (2009)

USA-Alaska, Adak Island Caribou 10 (1958) +14
(1959)

Projected to grow to 5000 Irruptive (due to
overgrazing)

Paul (2009)

USA-Alaska, Afognak Island Elk 8 (1929) Peaked 1400 Paul (2009)
USA-Alaska Plains bison 23 (1928) ~900 in 4 herds Stable www.adfg.alaska.gov

(2016)
USA Bison (on several NP,

NWR)
b100 (~1880s) 20,000+ Stable/incr. Hedrick (2009; see also

Table 5 therein)
USA-California Tule elk b30 (1895) 3800 (in 2007) Stable J. Hobbs, in Phillips et al.

(2012)
USA-Isle Royale, MI Moose Arrived early 1900s 1250 Stable/incr. Vucetich and Peterson

(2015)
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genetic variability, suggestive of past bottleneck events, yet their histor-
ically broad distributions point to flexible ecologies that have permitted
small populations of animals to thrive in a variety of environmental con-
ditions across their respective ranges (Hedrick, 2009; Broughton et al.,
2012). These species exhibit little to no negative demographic effects
from inbreeding, perhaps because sufficient gene flow occurred be-
tween herds or because historical bottlenecks allowed natural selection
to purge deleterious alleles and decrease detrimental genetic loads as-
sociated with the effects of inbreeding (Glémin, 2003).

The capacity to withstand genetic bottlenecks cannot be generalized
across species, but there are also accounts of wolf populations recover-
ing from low numbers (Table 2). A well-known example in the USA is
the reintroduction of wolves to the Yellowstone ecosystem, where a
founding population of 31 individuals in 1995 rapidly expanded to a
current population of over 500, largely successful because the popula-
tion was augmented naturally by migrants from Canada and Idaho
(vonHoldt et al., 2008; J. Gude, Montana Fish, Wildlife, and Parks, per-
sonal communication). Likewise, wolves on Isle Royale provide a more
extreme example of resilience in the face of isolation and inbreeding.
This island population was founded by 2 individuals, joined later by a
third, and grew and persisted in near isolation without intentional aug-
mentation for 60 years, with an average population of about 25. Given
the extremely small founding population, it is unsurprising that the re-
cent population exhibits skeletal and genetic characteristics consistent
with inbreeding depression (Räikkönen et al., 2009). Although the pop-
ulation has now dwindled to a few wolves (Table 2; Vucetich and
Peterson, 2015), and its relevancy to recovery efforts here is question-
able because no wolf recovery program would intentionally limit
recovery efforts to a single pair of wolves, the wolves on Isle Royale
did well for several decades. They hunted large prey (moose, Alces
americanus) and lived as long and had similar demographic parameters
to outbred populations of wolves elsewhere (Mech and Cronin, 2010;
Mech and Fieberg, 2014).

Another example, which approximates the population size of the
Mexican wolf, is the recovery of gray wolves in Scandinavia. After a pe-
riod of growth from 3 founders, recovery stalled because of poor pup
survival. However, the addition of 2 more breeding animals coincided
with a remarkable turnaround (Ingvarsson, 2002; Vilà et al., 2003),
and the population now exceeds 400. The Mexican wolf population is
now thriving similarly. In thewild in Arizona and NewMexico, Mexican
wolves have a 5-year mean (2010–2014) of 41.7% in the observed pop-
ulation increase from pup production (Fig. 1) and 30.5% annual recruit-
ment of pups to 31 December (AZGFD, unpublished results). Annual
censuses demonstrate that the population has been growing by an aver-
age 20% annually for 5 years (Fig. 1), a similar trajectory to that of Yel-
lowstone wolves during their first 10 years. Additionally, average
number of pups observed per breeding female in the wild from May
through September (termed “litter size”) has increased (Fig. 2) concur-
rently with the transition to a 100% wild born population. Also encour-
aging is the fact that observed litter size has been above the 1998–2014
mean of 3.3 pups in 6 of the last 9 years (Fig. 2).

Still, as with many other conservation efforts (e.g. Caro and
Laurenson, 1994; Caughley, 1994; Spiering et al., 2011), actions to re-
store this species during the last 30 years have demonstrated that
small populations face multiple challenges in recovery. While genetic
factors often impact population growth and persistence, the greatest

http://www.adfg.alaska.gov


Table 2
Persistence of wolf populations with few founders (Incr. = increasing).

Country Population low point Population currently Status Reference

Italy (Apennines) 100 (1973; isolated for
100–200 years)

~1500 Incr. Mech and Boitani (2003:326), Salvatori and Linnell (2005), L. Boitani (2015, pers.
comm.)

Greenland 20–100 (2003) Mech and Boitani (2003:322)
Croatia/Slovenia 50 (1990) 260–300 (2005–08) Stable/Incr. Gomerčić et al., 2010
Scandinavia
(Sweden,
Norway)

2 founders (1980s), +1
(~1990), +2 (2008)

460 (winter 2014/15) Stable/Incr. Hagenblad et al. (2009), Liberg et al. (2012); Swedish monitoring program

French Alps Migrants from Italy ~300 Stable/Incr. L. Boitani (2015, pers. comm.), BBC News Clip on 10/13/15
(www.bbc.com/news/science-environment-34510869); Fritts and Carbyn (1995)

Israel 91–159 in Negev Desert Stable Hefner and Geffen (1999)
Poland Reduced to ~100 after

WWII
~600–700 Stable/Incr. Mech and Boitani (2003),

http://www.wolvesandhumans.org/how_to_help_pages/wolf_research_poland.htm
Spain “Few packs in 1960s” N2000 Stable/Incr. Mech and Boitani (2003)
Brandenburg,
Germany

Extirpated 19th century;
2 founders 2007

~75–90 wolves (2012) Incr. Ministerium für Umwelt, Gesundheit und Verbraucherschutz Brandenburg (2012)

NW Montanaa, b Approx. 30 in 1990 ~315 (2006) Incr. Sime et al. (2007)
Yellowstone NPb 31 (1995) + 10 (1996;

only 2 of 10 reproduced)
510 minimum count in
Greater Yellowstone Area
(2014)

Incr. USFWS (2007), vonHoldt et al. (2008), Justin Gude (pers. comm.)

Central Idahob 20 (1996) 719 minimum count in
2014

Incr. Justin Gude (pers. comm.)

Isle Royale, MIc 2–3 (founded 1949) Reached ~50 animals; now
b5

Declining Mech and Cronin (2010), Vucetich and Peterson (2015)

Mainland
Michigan

Estimated ~6 (1973) 687+ (2010/11) Stable/Incr. Fuller et al. (2003), Michigan DNR (http://www.michigan.gov/dnr)

Kenai Peninsula,
AK

Founded 1960 150–180 Stable Fritts and Carbyn (1995)

Wisconsin 14 (1985) 782–824 (2011) Stable/Incr. Wisconsin DNR (http://dnr.wi.gov)
Minnesota 450–700 ~2450 Stable Minnesota DNR (http://www.dnr.state.mn.us)
Riding Mountain
Ntl Park,
Canada

30 (1996/97) Reached 113 (2011/12);
now ~69 (2013/14)

Stable Fritts and Carbyn (1995), Parks Canada (http://www.pc.gc.ca)

a TheMagic Pack startedwith 2 in 1981 from animals collared in British Columbia in 1979. The pair denned in NWMT and first had 5 pups in 1982. Theminimum count in 2014 in NW
MT was 428 animals.

b Areas share immigrating wolves moving between these populations and Canada, so all population growth cannot be exclusively attributed to the founding populations.
c Isle Royale represents an extreme case, with no intentional translocation and little natural immigration into the population for ~50 years, yet population has persisted N60 years.
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threats to populations are frequently something other than inbreeding
depression (Gilpin and Soulé, 1986; Lande, 1988; Caro and Laurenson,
1994; Mech and Cronin, 2010). This was illustrated in Mexican wolves
whenwild population growth stalled from2005 to 2009 because of nec-
essary removals and illegal poaching of released wolves (Wayne and
Hedrick, 2010). Likewise, inbreeding depression (as manifest in
lowered pup survival and recruitment) is generally assumed greater in
the wild than in captivity (e.g. Kalinowski et al., 1999; Hedrick and
Kalinowski, 2000). Yet pup survival in highly inbred red wolves (Canis
rufus) was higher in the wild (Brzeski et al., 2014), indicating that envi-
ronmental factors in the wild abated the stress of captivity (caused by
e.g. potential disease transmission or crowding stress in captive condi-
tions) and also impacted population viability in the short-term more
than did the direct genetic effects of inbreeding.

These observations and others (Tables 1, 2) show the potential for
populations to persist in the face of genetic challenges, and also indicate
that genetic effects, although important, may not be the overriding fac-
tors that determine population viability.We acknowledge the challenge
with such anecdotes is that they provide no sense of how often similar
circumstances lead to undocumented population extinctions. While
the anecdotes demonstrate the potential for persistence, at least in the
short term, they do not speak to the probability or the durability of
recovery.

In extreme cases, low genetic diversity in a species has been ‘res-
cued’ by genetic contributions from immigrant conspecifics
(Ingvarsson, 2002; Vilà et al., 2003) or other subspecies, as occurred in
the Florida panther (Johnson et al., 2010). However, this type of inter-
vention may introduce maladapted traits and cause detrimental effects
through outbreeding depression (Lynch, 1991; Edmands, 1999). The
Mexican wolf is currently increasing in abundance and lacks any appar-
ent demographic or physical signs of inbreeding, so we suggest that this
level of intervention is not warranted at this time. As Mexican wolves
and their conspecifics recovering elsewhere continue to expand, contact
will undoubtedly occur, but ideally not before the Mexican wolf is re-
covered sufficiently that its genetic and taxonomic integrity can be
preserved.

The recovery of small populations is therefore most often a game of
probabilities of survival, influenced by population history and genetic
load (Flather et al., 2011). Against this background, we review a few pri-
mary tools that are available to increase genetic diversity and direct
management actions in the recovery of the Mexican wolf.

3. Release of captive adults

An intuitive course of action,which has been suggested by conserva-
tion groups (e.g. letter to USDI Secretary Sally Jewel, dated October 8,
2015), is to release more adult wolves from the captive population.
While this strategy has the potential to increase genetic diversity in
the wild population, we believe that this benefit is outweighed by
more immediate, non-genetic challenges.

Captive-raised wolves released to the wild frequently get into con-
flicts (Wayne and Hedrick, 2010; Appendix 1); 56 of 90 confirmed nui-
sance incidents from 1998 to 2012 (Table 3) were caused by captive–
raised or –conditioned wolves. Mexican wolf recovery efforts stalled
for several years (~2003–2009, Fig. 1), primarily because of high wolf
mortality and removal from the wild in response to depredation claims
and boundary violations, illegal killing, and road kills (Wayne and
Hedrick, 2010). In 9 cases where captive–raised or –conditionedwolves

http://www.bbc.com/news/science-environment-34510869
http://www.wolvesandhumans.org/how_to_help_pages/wolf_research_poland.htm
http://www.michigan.gov/dnr
http://dnr.wi.gov
http://www.dnr.state.mn.us
http://www.pc.gc.ca


Table 3
Wolf nuisance reports investigated by the Interagency Field Team (IFT), 1998–2012.

Interagency Field Team investigated wolf nuisance reports Arizona New Mexico White Mountain Apache Tribe San Carlos Apache Reservation Total

Total for each jurisdiction 74 58 2 3 137
Confirmed nuisance wolf incident 40 45 2 3 90
Incidents involving domestic dogs 21 11 2 3 37
Domestic dog fatalities 0 4 0 0 4
Incidents involving captive-reared, released wolves 33 20 2 1 56
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were released to the wild, 8 failed to produce offspring that lived N

1 year (Appendix 1). Consequently, wolves that spent more than just
a fewmonths in captivity have rarely contributed new genetic material
to the wild population. Captive–raised or –conditioned animals may
also unduly jeopardize recovery efforts as their actions reduce public
support and complicate joint federal and state recovery coordination.
We therefore see the potential for the release of large numbers of
naïve captive-born wolves to do more harm than good.

In 2010, the available data suggested that a cessation of captive re-
leases would leave the population with an unsustainable load of adult
mortality (Wayne andHedrick, 2010). However, the cessation of captive
releases between 2009 and 2012, and the resulting decrease of captive-
born animals in the wild (Fig. 3), was followed by a sharp increase in
population size (Figs. 1, 3), reduced conflicts with domestic dogs, and
no clear evidence of decline in litter size (Fig. 2) or an increase in depre-
dation (Fig. 4). These observations could be due to factors other than
fewer captive releases, but clearly the trends remain favorable despite
fewer captive releases. It appears in hindsight that by limiting introduc-
tions to appropriately conditioned captivewolves, and bymaintaining a
savvy wild-born population, mortality has been moderated, freeing the
population to expandmore rapidly than during the early years of recov-
ery (20% per year over the past 5 years).

4. Fostering

Recovering rare species using captive-reared animals is challenging.
Wildlife reared in captivity often lack the skills required to survive in the
wild. To circumvent these challenges, wildlife managers have used fos-
tering as a valuable tool in releasing captive-bred animals into the wild.
Fostering is the act of placing newly born young or eggs, often produced
in captivity, with wild or wild-adapted parents of the same species
while they are rearing young of their own. Fostering has been success-
fully used in a variety of species, including marsupials (e.g. Taggart et
Fig. 3. Percent ofMexicanwolf wild population comprised of captive-born individuals and
overall wild population growth in Arizona and NewMexico, 1998–2015.
al., 2010) and many birds (Fyfe and Armbruster, 1977; Walton, 1977;
Armbruster, 1978; Burnham et al., 1978; Engel and Isaacs, 1982). It
also provides a mechanism for introducing underrepresented genomes
into a wild population (Scharis and Amundin, 2015).

Successful fostering efforts in other large mammalian carnivores
demonstrate that this technique should be considered whenever using
captive-rearedwildlife for species recovery, particularly for species hav-
ing complex social structures and extended learning periods. For exam-
ple, 79% of orphaned black bear (Ursus americanus) cubs placed in foster
natal dens emerged from the denwithmotherswho subsequently cared
for them (Alt, 1984; Alt and Beecham, 1984). Kitchen and Knowlton
(2006) demonstrated that coyote (Canis latrans) pups could be added
to litters with no evidence that surviving foster pups were at any disad-
vantage in weight gain or dominance status to the natal pups. Fostering
was also used in efforts to recover the critically endangered red wolf,
with a total of 21 captive- or wild-born red wolf pups fostered between
2002 and 2013 (Brzeski et al., 2014). Subsequent efforts also reported a
93% success rate with pups fostered from captivity into wild red wolf
dens (David Rabons, Former RedWolf Coordinator, personal communi-
cation, 2014). Likewise, gray wolves in Scandinavia showed successful
fostering in 4 litters (Scharis and Amundin, 2015). Four femaleswith lit-
ters of their own accepted additional foster pups introduced to the den
between the ages of 2–8 days, and there was no significant difference
between survival rate of the foster pups and natal pups. With as many
as 9 pups per litter, the foster pups successfully competed with biologi-
cal pups during nursing, even when they were 8 days younger. Scharis
and Amundin (2015) recommended fostering pups at least 4–6 days
of age to introduce new founder genes into wild wolf populations, and
their study illustrated the efficacy of fostering in gray wolves to increase
genetic variation in recovering endangered species.

Against this backdrop, the Mexican wolf Interagency Field Team
(IFT) conducted a fostering operation in 2014 with 2 wild-born litters
in Arizona. The Coronado Pack, a mated adult pair, was released in
Fig. 4. Relationships ofwildMexicanwolf population to confirmed livestock depredations,
1998–2014.
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April, but split up 3 days later. The female (F1126, Appendix 1) whelped
a litter of 6 pups in early May, and the IFT trapped her, located her litter,
and removed one female and one male pup for fostering with pups of
similar age in the Dark Canyon Pack (DCP). At the end of June, both fos-
tered pups and the 3 biological pups in the DCP were documented on
camera, indicating the fostering effort was successful. Both fostered
pups were still alive and healthy during surveys in January 2015 and
the male pup has since paired with a female from a neighboring pack.

Given this history of successful fostering in many mammal species,
including critically endangered canids, fostering should be an active
part of the recovery of endangered Mexican wolves. Strategic breeding,
translocation, and fostering efforts in the captive and wild populations
can mitigate many of the effects of inbreeding depression and produce
new animals with greater genetic variation (e.g. Ingvarsson, 2002; Vilà
et al., 2003; Tallmon et al., 2004; Hedrick, 2005; Fredrickson et al.,
2007; Wayne and Hedrick, 2010; Adams et al., 2011; Fredrickson,
2011).
5. Setting recovery targets

There is ongoing discussion in the literature about what number of
animals is appropriate for recovery. In reality, there is “no single
‘magic’ population size that guarantees persistence of populations”
(Thomas, 1990). Yet to deal with the complexity and stochasticity sur-
rounding inbreeding effects, the conservation genetics tradition offers
the ‘50/500’ rule. This suggests that the genetic effective population
size (NE; the size of a randomly mating model population subject to
same genetic drift as the actual population) should be maintained
above 50 at all times, and above 500 over the long term (Franklin,
1980; Soulé, 1980). Theoretically, these values would moderate the
power of random drift to fix deleterious alleles in the short term,
while maintaining immunological diversity and a base of variation on
which selection could act over the long term (Gillespie, 2004).

However, the 50/500 numbers are far from being a universal thresh-
old of success. In arriving at 50, Soulé (1980) observed that breeders of
domestic animals tolerate NE in the range of 17 to 25 (i.e. 2–3% loss of
heterozygosity per generation), but stating that he preferred to be
more conservative, picked an NE of 50, or 1% loss per generation. On
the other hand, Lande (1995) argued that 5000would be amore appro-
priate NE for the maintenance of adaptive potential, a value that many
species would fail to achieve without human aid. In short, these num-
bers are convenient reference points, and provide a framework for dis-
cussion, but are not thresholds beyond which a population's fate turns
from promising to dire (Fritts and Carbyn, 1995).

It is appropriate to desire that a population be free of immediate ge-
netic threats before being considered ‘recovered’, and the temptation is
to reference the generic ‘50/500 rule’ for guidance. In keeping with this
guideline, Wayne and Hedrick (2010:18) recommended for Mexican
wolf recovery that for the “…recovery of Mexican wolves three popula-
tions, each simultaneously having 250 animals for 8 years (approximately
two generations) is the minimum necessity”. The resultant current draft
recovery criteria for Mexican wolves are consequently based on an NE

of 50,which is offered as aminimumnumber for each population before
Mexican wolves are no longer regarded as endangered (Hedrick and
Fredrickson, 2008; Wayne and Hedrick, 2010; USFWS 2013, unpub-
lished report). If NE of 50 is to be maintained in each population, the
rule for the draft recovery criteria stipulates a minimum of 250 wolves
needed in each censused population (NC) because the ratio of NE/NC

was assumed to be ~0.20 based on published estimates and modeling
conducted on Scandinavian wolves (Forslund, 2009; Bruford, 2015).
Under these guidelines, long-term persistence of Mexican wolves will
require 2500 wolves (500/0.20) in each of 3 populations unless there
is sufficient genetic exchange. While this is much less than the thou-
sands or 100s of thousands suggested for NE (e.g. Thomas, 1990;
Lande, 1995; Traill et al., 2010), this 50/500 rule for genetic fitness is
subjective (Flather et al., 2011) and may only be within the right
order of magnitude (Fritts and Carbyn, 1995, and references therein).

There are several weaknesses inWayne andHedrick's (2010) recom-
mendation. First, as stated above, the number 50 was selected as an ap-
proximation, arbitrarily halving the rate of genetic loss that is broadly
acceptable in domestic animals. The actual genetic vulnerability of a
given population depends on, among other things, its history, because
selection has an opportunity to purge deleterious alleles as populations
contract (Glémin, 2003). Such history may explain why many ungulates
seem able to routinely withstand severe genetic bottlenecks (Table 1).

Second, the choice is not between “good” (≤1% loss of heterozygosity
per generation) and “bad” (N1%), but rather a decision along a continu-
ous scale. We also have no way of knowing what specific ‘gene × envi-
ronment’ challenges will be faced by Mexican wolves (e.g. will
particular deleterious alleles that get fixed in Mexican wolves be espe-
cially problematic in their native, but now highly altered, environ-
ments?). There are no quantitative data to show that inbreeding
depression would unduly impact Mexican wolves at 1% loss per gener-
ation (NE = 50), 1.5% (NE b 33), 3% per generation (NE = 17), or at any
other specific threshold.

Identification of a minimum viable population (MVP; Soulé, 1987)
size also needs to consider a population's connection to other popula-
tions (Wolf et al., 2015), because networks of small populations, con-
nected as parts of larger metapopulations, may have much different
viability than those existing in isolation. As an example, Vortex popula-
tion models (USFWS 2013, unpublished report) show that 2 connected
populations of 250wolves perform similarly to the 3 populations of 250
wolves recommended by Wayne and Hedrick (2010). The amount of
gene flow between populations affects population persistence more
strongly when population size is small (i.e. b300 individuals; USFWS,
2015b). Yet having high connectivity between 2 or 3 populations in-
creases NE and reduces the number of wolves needed for recovery in
each subpopulation (Soulé, 1987; Fritts and Carbyn, 1995). There is
also considerable disagreement about whether this guideline can be
generalized across different taxa or used to examine extinction risk
(Flather et al., 2011) because it is based on general theoretical principles
(Shaffer, 1981).

The ratio between NC and NE is another notoriously difficult param-
eter to estimate. In real populations, the calculation of NE is complicated
by factors like fluctuating population sizes, social dynamics, spatial dis-
persion, overlapping generations, and gene flow. For example, Harris
and Allendorf (1989) evaluated 9 ways to calculate the ratio of NE/NC

and the results variedwidely using the same dataset. The literature sug-
gests gray wolf populations have NE/NC ratios of 0.20 to 0.40 (Aspi et al.,
2006; Liberg et al., 2005; vonHoldt et al., 2008), with 2 recent studies
producing an estimated NE of 0.29 and 0.40 of NC (Aspi et al., 2006;
vonHoldt et al., 2008). By contrast, information from the wild popula-
tion in 2011 suggested the ratio might be as low as 0.10 (J. Oakleaf,
USFWS, personal communication). Assuming that these ranges of
values capture a point of true biological relevance to the Mexican
wolf, the appropriate target for population size might be 63 (25/0.4)
or 500 (50/0.1).

The NE (and NE/NC ratio) deemed necessary for the recovery of the
Mexican wolf is critically important to the scientific defensibility of
the recovery criteria, yet there is demonstrated support for a range of
population sizes that could be used as valid recovery criteria. Certainly,
discussions on the minimum number of wolves necessary for popula-
tion survival have not coalesced, and estimates range widely from the-
oretical models to empirical considerations (Fritts and Carbyn, 1995;
Musiani et al., 2009). Based on the range of scientifically defensible pos-
sibilities, it would bemisleading to offer up a single number as themin-
imum population size and NE needed to recover Mexican wolves.
Nevertheless, until the recovery plan can be revised, the 2015 Final
Rule for the experimental 10j population proposes 300–325 animals
as a total number of Mexican wolves needed for population recovery
(USFWS, 2015b).
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6. Population viability analyses

A common criticism of MVP estimates is that they fail to account for
the high natural resilience of small wolf populations (e.g. Fritts and
Carbyn, 1995; Mech and Cronin, 2010). Population viability analyses
(PVAs) are theoretical models implemented to examine the viability of
a population under certain management or environmental conditions. A
great deal of emphasis was originally placed on using PVAs to identify
MVPs, by assessing the risk of extinction of populations of various sizes,
or to indicate the urgency of recovery efforts (Shaffer, 1981; Gilpin and
Soulé, 1986). However, direct applications of PVAs are limited, and
many researchers have provided recommendations for their appropriate
use (Beissinger andWestphal, 1998; Ellner et al., 2002; Reed et al., 2002;
Wolf et al., 2015). In particular, Reed et al. (2002) concluded that although
PVAs are a powerful tool in conservation biology, these assessments
should not be used to determineminimumpopulation size or the specific
probability of reaching extinction. Rather, PVAs are most appropriate for
comparing the relative effects of potential management actions on popu-
lation growth or persistence. Moreover, the outcome of a PVA, in terms of
absolute risk of extinction, is driven by the demographic parameters en-
tered into the model, and there is great uncertainty in these values
(Ellner et al., 2002) because they often change with fluctuating popula-
tion sizes and environmental conditions.

The most effective use of PVAs is to compare relative, not absolute,
risk under various management scenarios (Beissinger and Westphal,
1998; Reed et al., 2002). Absolute extinction probabilities from PVA
(e.g. inMexicanwolves, the Vortexmodel) should not discount alterna-
tive recovery scenarios. In addition, a PVA should include sufficient de-
tail and a systematic sensitivity analysis to identify those parameters
driving population viability and the range of uncertainty around the
risk assessment (Ellner et al., 2002; Reed et al., 2002). In the case of re-
covery planning, PVAs should be based on empirical data and used to
identify parameters to incorporate into the recovery criteria rather
than justifying a desired population size or the number of effective mi-
grants/generation.

7. Conclusions

The genetic guidelines for preventing inbreeding depression are un-
certain and basing explicit recovery goals on such guidelines stretches
them beyond their scientific underpinnings, and beyond the spirit in
which they were first proffered. As important as genetic considerations
are, they are not the only factors that might affect the success of a
recovery process (Hedrick and Fredrickson, 2008; Mech and Cronin,
2010; Johnson et al., 2011). For instance, political controversy has
been an impediment to Mexican wolf recovery and undermined public
support for the recovery program, as illustrated by the observation that
of the 124 documentedMexican wolf mortalities from 1998 to 2015, 66
(53%) were attributed to illegal shooting and trapping (USFWS, 2014).
This underscores the need to develop a legally-sufficient, science-
based Mexican wolf recovery plan that recognizes that not all chal-
lenges are biological. We recommend a more practically minded ap-
proach in which recovery goals are developed with reference to the
available resources (human and habitat; Meffe and Carroll, 1994), and
then reviewed from the perspective of inbreeding depression. We sug-
gest that the intensity of monitoring can be adjusted to ensure that se-
vere inbreeding effects are detected before they threaten population
stability, providing an opportunity to modify management if needed.
If problematic inbreeding depression arises in a given population, we
note that even a low rate of movement between populations, whether
natural or human assisted (e.g. through fostering or adult migration)
can be used to raise the NE of any individual population to near that of
themetapopulation as a whole. Given the availability of these powerful
and flexible tools for managing inbreeding depression, recovery targets
should emphasize practical considerations that are likely to immediate-
ly impact success, rather than an inexact genetic rule of thumb.
Appendix 1
Fates of 13 adult Mexican wolves in wild population that spent ≥4 months as captive an-
imals, 2008–2015. Fate unknown animals are considered non-contributing to the wild
wolf population. F, female; M, male, *captive–raised/conditioned; +wild–raised/condi-
tioned; ^potential genetic contributors = produced pups that have survived N1 year.
Individual(s)
 Fate(s)
M1039+
F836*
Pair released 2008 as Moonshine Pack in Arizona, but split up. Male
went to NewMexico; now fate unknown; female was illegally shot.
105*
 Translocated 2009 to New Mexico to pair with male in local pack,
but effort failed; illegally shot near a residence.
1054*
 Translocated 2011 to Arizona to pair with female in local pack, but
effort failed. Removed to captivity for nuisance issues.
106*
 Translocated 2011 to New Mexico; lethally removed for nuisance
issues.
1133*
 Released 2013 in Arizona to pair with Bluestem Pack female, but
effort failed. Removed to captivity for nuisance issues.
M1249+^
F1126*^
M1051*
Released 2014 as Coronado Pack, but split up. M1249 became
breeder in Diamond Pack. F1126 later captured with pups; 2 pups
fostered into the Dark Canyon Pack; one pup is now 2 years old;
other is fate unknown. F1126 and her 4 remaining pups were
paired with M1051 and translocated. F1126 is now dead, and
M1051 and 4 pups are fate unknown.
M1290+^
F1218*
Released 2014 as Hoodoo Pack, but split up. Male paired with an
uncollared female to form new Hoodoo Pack. F1218 was illegally
shot.
F1305+
M1130*
Released as Rim Pack 2015, but split up. Female was illegally shot,
and male was lethally removed for nuisance issues.
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